Objective
This project aims for revolutionary energy filtering nano-devices for information and communications technology (ICT). It is at the intersection of phononics, photonics, nanoscale electro-thermal devices and molecular engineering. By building new energy filtering devices down to molecular scales we aim to generate new knowledge and understanding of the electronic, phononic and near-field energy/heat fluxes at the fundamental limits of nano-scale energy management, and to demonstrate novel proof-of-concept non-equilibrium phonon engineered electro-thermal devices in real applications. The efficient nano-scale thermal management necessitate developing new theoretical and experimental tools for understanding and mastering the individual non-equilibrium energy/particle channels and inter-channel couplings. Control of the physical mechanisms behind non-equilibrium electronic energy filtering effects will be firstly addressed by non-linear transport in molecular junctions by developing new research tools that combine state-of-the-art molecular synthesis, bolometers, scanning probe microscopy technologies and theoretical modelling. In parallel with the molecular bottom-up approach, we will work with scalable thermionic nano-junctions, which not only have great technological potential of their own but also serve as a model system for the molecular devices. By employing non-linear out of equilibrium electro-thermal effects in molecular and scaled-down junction systems, we pursue the realization of proof-of-concept ICT devices utilizing these technologies within the time span of the project. This project will combine synergies in theory, experiment and technology-development covering different fields from chemistry to electronics. The project partners, who are leaders in their respective fields, form a consortium that is uniquely positioned to achieve the ambitious objectives.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics
- natural sciences physical sciences atomic physics
- natural sciences physical sciences optics microscopy
- engineering and technology other engineering and technologies microtechnology molecular engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.