Objective Biogenic volatile organic compounds (BVOCs) influence atmospheric oxidation causing climate feedback thought to be especially significant in remote areas with low anthropogenic emissions, such as the Arctic. Still, we do not understand the dynamics and impact of climatic and biotic BVOC emission drivers in arctic and alpine tundra, which are highly temperature-sensitive BVOC sources.TUVOLU will redefine tundra BVOC emission estimates to account for rapid and dramatic climate warming accompanied by effects of vegetation change, permafrost thaw, insect outbreaks and herbivory using multidisciplinary, established and novel methodology.We will quantify the relationships between leaf and canopy temperatures and BVOC emissions to improve BVOC emission model predictions of emission rates in low-statured tundra vegetation, which efficiently heats up. We will experimentally determine the contribution of induced BVOC emissions from insect herbivory in the warming Arctic by field manipulation experiments addressing basal herbivory and insect outbreaks and by stable isotope labelling to identify sources of the induced emission. Complementary laboratory assessment will determine if permafrost thaw leads to significant BVOC emissions from thawing processes and newly available soil processes, or if released BVOCs are largely taken up by soil microbes. We will also use a global network of existing climate warming experiments in alpine tundra to assess how the BVOC emissions from tundra vegetation world-wide respond to climate change.Measurement data will help develop and parameterize BVOC emission models to produce holistic enhanced predictions for global tundra emissions. Finally, modelling will be used to estimate emission impact on tropospheric ozone concentrations and secondary organic aerosol levels, producing the first assessment of arctic BVOC-mediated feedback on regional air quality and climate. Fields of science natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic zonesnatural scienceschemical sciencesorganic chemistryvolatile organic compoundsnatural scienceschemical sciencesorganic chemistryalcoholsnatural sciencesbiological scienceszoologyentomologynatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-COG - ERC Consolidator Grant Call for proposal ERC-2017-COG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator KOBENHAVNS UNIVERSITET Net EU contribution € 2 347 668,00 Address Norregade 10 1165 Kobenhavn Denmark See on map Region Danmark Hovedstaden Byen København Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all KOBENHAVNS UNIVERSITET Denmark Net EU contribution € 2 347 668,00 Address Norregade 10 1165 Kobenhavn See on map Region Danmark Hovedstaden Byen København Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00