Objective
Laplace NMR (LNMR), comprising diffusion and relaxation NMR experiments, provides detailed information on the dynamics and chemical resolution of molecular systems, which is complementary to NMR spectra. Similarly to the traditional NMR spectroscopy, the information content of LNMR can be significantly enhanced by a multidimensional approach. The long experiment time and low sensitivity restrict the applicability of the multidimensional method, however. Based on spatial encoding of multidimensional data, we develop a broad range of single-scan LNMR experiments, constituting a new class of NMR experiments called ultrafast multidimensional LNMR. The method shortens the experiment time by one to three orders of magnitude as compared to the conventional method, offering unprecedented opportunity to study fast processes in real time. Furthermore, it enables boosting the sensitivity by several orders of magnitude by using nuclear spin hyperpolarization, which allows investigation of low-concentration samples. Ultrafast LNMR opens paradigm-breaking prospects in chemical, biochemical, geologic, archaeologic and medical analysis. LNMR can, e.g. provide unique information on the intra- and extracellular metabolic processes, including those of cancer cells, which facilitates diagnostics and helps to find efficient treatments, and it can be exploited in the development of new types of biosensors. Furthermore, the method reveals previously unobservable details about the phase behaviour of ionic liquids, gel and polymer formation, as well as catalysis, which are essential in understanding their performance in technological applications. LNMR is also applicable to portable, single-sided magnets, implying potential to raise the sensitivity of low-field NMR to a completely new level. This entails significant impact on mobile chemical and medical analysis. The low cost of the low-field facility renders advanced NMR analysis broadly available, even in developing countries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- medical and health sciences clinical medicine oncology
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
90014 Oulu
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.