Objective
The main aim of the TICTOCGRAV is to explore the limits of contemporary physics with a new generation of atomic quantum sensors, namely optical atomic clocks and atomic gravimeters.
After 100 years of General Relativity and Quantum Mechanics, both theories have been tested at an unprecedented level. Direct detection of gravitational waves is a great success and represents another impressive confirmation of the present theory of gravitation GR. Indeed, we are living a “Quantum Revolution”, in which advanced quantum concepts are at the heart of several devices, from precision navigation and location on Earth to secure communication protocols based on entangled photons.
Despite all these great success in both areas, unfortunately, we still lack a full comprehension at the fundamental level. As a matter of fact, a full quantum treatment of space-time is still under discussion in the community. While several theoretical attempts have been pursued, a clear solution to the problem does not exist yet. Very likely, an answer to this problem will come from high precision experiments capable of measuring tiny gravitational effects on quantum systems as atomic clocks and quantum inertial sensors.
TICTOCGRAV will address this questions experimentally by performing ultimate precision tests of gravity with fountains of alkali-earth metals, namely Cadmium and Strontium atoms.
Specifically, TICTOCGRAV will perform the highest precision tests so far of:
-the weak equivalence principle (WEP) below 10^-13 with quantum probes, exploring also possible tests of spin-gravity couplings at the same level;
- quantum interference of high precision clocks in a gravitational potential; demonstrating for the first time gravity induced decoherence mechanisms, opening the way towards a possible explanation of quantum to classical transition in macroscopically entangled quantum systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences relativistic mechanics
- natural sciences physical sciences astronomy observational astronomy gravitational waves
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50121 Florence
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.