Objective The demand for compact energy systems for portable devices such as wearable sensors or mobile phones is increasing. Electrochemical systems are promising candidates for sustainable energy conversion and storage on miniaturised platforms. A recent approach to harvest green energy is biophotovoltaic systems (BPVs), where photosynthetic microorganisms are used to transform light into electrical energy. However, BPVs still provide a relatively low efficiency and are yet unable to deliver the high peak power required for sensor operation or wireless signal transmission in portable systems. In PHOENEEX, I will address these limitations by i) improving the efficiency of BPVs and ii) combining the BPVs with microsupercapacitors (µSCs) which can temporarily store the harvested electrical energy and provide a higher peak power output upon request. More specifically, I will develop highly optimised 3D carbon microelectrodes (3DCMEs) to enhance electron harvesting from cyanobacteria in BPVs and for increased energy density in µSCs. Finally, the improved BPVs and the optimised µSCs will be integrated on the BioCapacitor Microchip - a compact sustainable energy platform for portable systems. The fabrication of 3DCMEs with highly tailored material properties, large surface area and hierarchical architecture is achieved by pyrolysis of polymer templates in an inert atmosphere. The fundamental hypothesis of PHOENEEX is that the combination of novel precursor materials, new methods for 3D polymer microfabrication and optimised pyrolysis processes will allow for fabrication of 3DCMEs with highly tailored material properties, large surface area and hierarchical architecture impossible to obtain with any other method. Fields of science engineering and technologyenvironmental engineeringenergy and fuelsrenewable energynatural scienceschemical sciencespolymer sciencesengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsengineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsmobile phonesengineering and technologyenvironmental engineeringenergy and fuelsenergy conversion Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-COG - ERC Consolidator Grant Call for proposal ERC-2017-COG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator DANMARKS TEKNISKE UNIVERSITET Net EU contribution € 2 745 500,00 Address Anker engelunds vej 101 2800 Kongens lyngby Denmark See on map Region Danmark Hovedstaden Københavns omegn Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all DANMARKS TEKNISKE UNIVERSITET Denmark Net EU contribution € 2 745 500,00 Address Anker engelunds vej 101 2800 Kongens lyngby See on map Region Danmark Hovedstaden Københavns omegn Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00