Objective The sophistication reached by organic chemistry has enabled the design and synthesis of a wide range of dynamic molecules that display controlled shape changes with an ever-increasing refinement. However, amplifying these molecular-scale dynamics to support shape-transformation in a broad range of macroscopic functions remains a key challenge.To address this challenge, I draw inspiration from living materials where molecular machines maintain out of equilibrium states by ingenious coupling with their anisotropic supramolecular environment, and ultimately promote the appearance of emergent properties on higher levels of organization.The aim of Morpheus is to develop shape-shifting materials and shape-generating photochemical systems by amplifying the motion of molecular machines over increasing length scales, towards the emergence of cohesive shape transformation in artificial tissue-like materials. We will (i) develop motorized materials by coupling light-driven molecular motors to liquid crystals and pre-program photoreaction-diffusion processes to achieve continuous motion; (ii) combine microfluidics with the anisotropic response of liquid crystal elastomers to create a library of shape-shifting bubbles and shells that undergo pre-programmed shape modification under irradiation with light; (iii) promote adhesion between units of mechanized matter, while preserving their original shape-shifting and shape-generating properties; and (iv) assemble tissue-like morphing materials from large cohesive networks of shape-shifting micro-spheres.This project will lay the scientific foundation for a new and multidisciplinary approach towards shape-generating molecular materials. It will yield unprecedented examples of emergent dynamics, provide simple models to untangle the underpinnings of mechanical transduction in nature, and contribute to developing new paradigms for the design of active matter. Fields of science natural sciencesphysical sciencesclassical mechanicsfluid mechanicsmicrofluidicsnatural scienceschemical sciencesorganic chemistryengineering and technologymaterials engineeringliquid crystals Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-COG - ERC Consolidator Grant Call for proposal ERC-2017-COG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator RIJKSUNIVERSITEIT GRONINGEN Net EU contribution € 1 425 657,44 Address Broerstraat 5 9712CP Groningen Netherlands See on map Region Noord-Nederland Groningen Overig Groningen Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all RIJKSUNIVERSITEIT GRONINGEN Netherlands Net EU contribution € 1 425 657,44 Address Broerstraat 5 9712CP Groningen See on map Region Noord-Nederland Groningen Overig Groningen Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 UNIVERSITEIT TWENTE Participation ended Netherlands Net EU contribution € 574 342,56 Address Drienerlolaan 5 7522 NB Enschede See on map Region Oost-Nederland Overijssel Twente Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00