Objective
Lidar remote sensing of the earth’s atmosphere is one of the main challenges in coping with the effects and causes of global warming caused by the emission of greenhouse gases. The present operating Lidar missions are all implanted on large satellite platforms due to the size of the telescope and high energy laser modules required to ensure a sufficient collection of light to extract the signal from the detector noise. The principal objective of HOLDON project is to develop a new detection chain which will improve the performance of the Lidars on large platforms and/or reduce the Lidar payload to be integrated in the future micro and mini-satellites. The performance increase is obtained by the optimization of HgCdTe avalanche photodiodes that will be hybridized to a CMOS Readout Circuit providing two operation modes and designed to meet the most demanding requirements for Lidar applications in terms of sensitivity, dynamic range and temporal resolution.
To achieve these goals, a team of 7 partners, leaders in the different fields related to Lidar missions, will collaborate (4 represented EU member states). To this end, three ambitious objectives are defined:
• Design and built a cutting-edge photon noise limited Lidar detection chain
• Validate adequation between detection chain key performances and future space mission requirements
• Demonstrate the improvement achieved with the cutting-edge detection chain for greenhouse gases detection
COMPET-2-2017 aims at supporting project developing new technologies, systems and sub-systems for Earth observation in a relevant environment. According to this call, HOLDON project addresses i) “Detector technolog
y and complete detection chain enhancement in the domains of CMOS and Infrared for Earth observations”, ii) “Sensors and mission concepts delivering high accuracy parameters for emission measurements.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- engineering and technology environmental engineering remote sensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences optics laser physics pulsed lasers
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.1. - Enabling European competitiveness, non-dependence and innovation of the European space sector
See all projects funded under this programme -
H2020-EU.2.1.6.2. - Enabling advances in space technology
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-COMPET-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.