Objective
Although the T cell antigen receptor (TCR) occupies a central place in T cell physiology, it does not work in isolation and the signals it triggers are tuned by receptors that convey positive (costimulators) and negative (coinhibitors) informations. We lack a satisfying comprehension of the way T cells integrate such multiple inputs to make informed decisions. The proteomics-based methodology we developed around the TCR places us in a favorable situation to decode at systems-level the crosstalk between the TCR, the CD28 costimulator and the PD-1 coinhibitor signaling pathways. The novelty of our approach stems from (1) its use of primary T cells, (2) its capacity to probe the architecture and dynamics of signalosomes resulting from T cell-antigen presenting cell encounters, (3) the attention we pay to the stoichiometry of the studied signalosomes, a key parameter largely ignored in previous studies, and (4) its multidisciplinary nature straddling molecular and organismal scales.
Our specific aims are:
Aim 1. To understand how the TCR and CD28 signaling pathways cooperate to achieve optimal T cell responses.
Aim 2. To determine whether CD28 is the sole target of the PD-1 coinhibitor.
Aim 3. To determine how under inflammatory conditions CD28 functions can be superseded by those of OX40, a costimulator of the TNFR superfamily.
Aim 4. To unveil how malfunctions of LAT, a key signaling hub used by the TCR, disrupt the TCR-CD28 crosstalk and result in unique pathogenic T cells that by becoming ‘autistic’ to TCR signals and addicted to CD28 signals lead to severe immunopathologies.
We think that combining genetic, epigenomics, proteomics, and computational approaches creates ideal experimental conditions to understand at system-levels how TCR, costimulatory, coinhibitory and inflammatory signals are integrated during T cell clonal expansion. Although of fundamental nature, our project should help understanding the harmful role PD-1 plays during anti-tumoral responses.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- medical and health sciences basic medicine physiology
- natural sciences biological sciences genetics epigenetics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.