Objective
Topological matter is a new research focus with great perspectives. These are insulators with an inverted “negative” bandgap and a conducting surface state. While the surface state in a topological insulator (TI) is composed of chiral fermions carrying charge and spin, in topological superconductors it is pinned to zero energy due to particle-hole symmetry and composed of fermions that carry neither charge nor spin. In-stead, they are non-abelian fermions, Majorana and parafermions (MF/PF), that have been proposed for topological quantum computing. Evidence for MFs have been found in nanowires. However, the scaling-up challenge requires a platform in which networks of MFs can be realized. Here, we propose to use graphene-based van der Waals heterostructure for this purpose. The unprecedented versatility is enabled by combining high-mobility graphene with other layered materials, such as transition-metal dichalcogenide, few-layer ferromagnets and superconductors (SCs). This allows to design topological systems, e.g. the quantum spin, anomalous and valley Hall effect, by combining Zeeman energy, spin-orbit and pairing interaction. We will design 2D quantum matter using different approaches, including strain tuning and the dressing of the bandstructure by photon-fields (Floquet TI), and couple it to SCs to induce topological superconductivity. We will use our expertise from studies of Cooper-pair splitters to not only add pairing in a single edge-state, but also between different edge-states, beneficial in obtaining MFs and more exotic quasiparticles. We will apply advanced high-frequency techniques, e.g. emission and noise - in addition to local tunneling spectroscopy - to characterize the in-gap states and to prove their topological nature. We will deliver a versatile technology with which new states of matter can be obtained in a platform which can be engineered in a top-down manner into networks allowing for quantum-state manipulation of MFs and PFs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences physical sciences theoretical physics particle physics fermions
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4051 Basel
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.