Iron is the fourth most abundant element in the Earth’s crust (following oxygen, silicon, and aluminum), and therefore, iron is a major constituent of all soils and sediments. During rock weathering at the Earth’s surface, iron forms secondary minerals with very small particle sizes and sometimes weak crystallinity. Since the element iron can be oxidized or reduced, it is also of fundamental importance in natural environments which are periodically anaerobic due to high water contents or flooding. Such environments include wetlands, river floodplains, estuaries, tidal flats, irrigated rice paddy soils, groundwater aquifers, and lake or marine shelf sediments. In recent decades, it has been established that biogeochemical redox processes can directly or indirectly lead to a complete recrystallization and/or transformation of iron minerals, which has important implications for understanding modern and past biogeochemical cycles of carbon, phosphorus, nitrogen, sulfur, and essential or potentially toxic trace elements. In these element cycles, iron minerals are important as sorbents and/or host phases for other elements, as electron acceptors or donors in biogeochemical redox reactions, and as catalysts of surface reactions with inorganic or organic compounds. Recently, the importance of poorly-crystalline iron oxyhydroxide minerals for organic carbon stabilization in soils and sediments has been recognized and is now receiving much attention because of its possible impact on global climate and soil fertility. In addition to natural environments, iron mineral transformation processes also play important roles in engineered systems (e.g. wastewater treatment, groundwater remediation, geological storage of nuclear waste), corrosion sciences, archaeology and cultural heritage sciences, and research on paleoclimate and the evolution of early Earth and Mars. To date, iron mineral recrystallization and transformation processes and their influence on other element cycles have mostly been studied in strongly simplified laboratory systems. In-situ studies in soils and sediments are lacking because it is very challenging to detect poorly-crystalline minerals in small quantities in a soil matrix containing many other more crystalline minerals. Therefore, we do not know if and how fast the same processes as observed in simplified laboratory systems actually occur in nature. The aim of this project is to develop novel methods for investigating important iron mineral recrystallization and transformation processes in natural environments, and to apply these methods to study selected mineral transformation processes and their impact on other elements in redox-affected soils and sediments.