Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Stochastic Ericksen-Leslie Equations

Objective

The objective of the research proposed in this project is to give a sound mathematical description of the noise-induced Fréedericksz transition in Nematic Liquid Crystal (NLC) with general geometry configurations. To this aim we will: 1) solve some important and difficult open mathematical problems related to the stochastic stochasic Ericksen-Leslie Equations (SELEs) which basically describe the dynamics of liquid crystals with stochastic perturbations, and 2) give a rigorous mathematical proof of the noise-induced Fréedericksz transition in NLC. In particular, we will establish the existence and uniqueness solution of the Ginzburg-Landau (GL) approximation of SELEs. By using Large Deviations Principle (LDP) theory and the de Giorgi Gamma-convergence we will prove that the action functional of the SELEs with small spatially converges to the action functional of the SELEs with spatially white noise. We will rigorously justify the probabilistic interpretation of the results in terms of the asymptotics of the mean exit time from a neighbourhood of an attracting stationary solution, a hint to noise-induced Fréedericksz transition. By using again LDP theory will rigorously show that in the presence of small noise there is a positive probability of transition between the attraction domains of the stationary solutions for the deterministic system; this is a rigorous mathematical proof of the noise-induced Freédricks’s transition. We will also prove the existence and uniqueness of an invariant measure which satisfies a LDP. The latter result confirms that in the long run the noise still induces transition between equilibria. Finally, we aim to prove the existence and uniqueness of solution of the SELEs, and if time permits transfer results obtained for the GL approximation of SELES to the original SELEs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

UNIVERSITY OF YORK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
HESLINGTON
YO10 5DD YORK NORTH YORKSHIRE
United Kingdom

See on map

Region
Yorkshire and the Humber North Yorkshire York
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0