Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

New ideas for the Variational Approach to Brittle and Cohesive Fracture

Objective

During World War I the English aeronautical engineer A.A. Griffith formulated a theory to explain failure of materials, based on the idea that crack growth is the result of the competition between the surface energy spent to produce the fracture and the energy stored in the uncracked region.

Griffith's viewpoint, that by its own nature is variational, found a rigorous mathematical setting in the variational formulation for quasistatic evolutions by Francfort and Marigo, in 1998. Remarkably, this work provides a general framework for several problems in Fracture Mechanics, including post-Griffith theories, in particular the one due to Barenblatt. Griffith and Barenblatt theories differ in the surface energy dissipated in the fracture process: the first is proportional to the measure of fracture set (surface in 3d, length in 2d), the latter depends also on the amplitude of the opening between the two sides of the crack. Microscopically, in the first case (brittle fracture) any material point is either broken or sound, in the latter (cohesive fracture) restorative forces, depending on the opening, are present between the lips of the crack set. Particular choices of cohesive dissipation in the evolution may describe fracture by fatigue.

Fatigue occurs when a material degrades by repeated loading and unloading. Fracture by fatigue is extremely dangerous and difficult to predict, since it happens in normal operating conditions without evident warnings. Moreover, it is responsible of about the 90% of failure occurrences. Despite its importance, both the mathematical and the mechanical treatment of fatigue by fracture are much less general than those for brittle fracture.

Nevertheless, even the existence of quasistatic evolutions for 3d brittle fracture is still an open problem. This action aims both to prove such existence result with an innovative combination of two apparently alternative approaches, and to explore the rich field of fracture by fatigue.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

ECOLE POLYTECHNIQUE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 076,00
Address
ROUTE DE SACLAY
91128 PALAISEAU CEDEX
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 173 076,00
My booklet 0 0