Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Routing Energy Transfer via Assembly of Inorganic Nanoplatelets

Objective

Investigation of artificial light-harvesting systems is an important part of the European research effort towards the development of sustainable and carbon-free energy sources. This research proposal aims to develop a new type of semiconductor heterostructures – solution-processed nanoplatelet assemblies capable of harvesting and transferring energy of light similar to antenna complexes of photosynthetic organisms. Towards this goal, the research project will use quantum-confined 2D semiconductor nanoplatelets arranged into superplatelet structures by means of colloidal self-assembly. The 2D nanoplatelets, which can be thought of as giant artificial chlorophyll molecules, have superior optical properties and enable the design of hybrid materials with absorption spectrum covering energy range from ultraviolet to near-infrared by mixing and matching lead halide-based perovskites with II-VI and IV-VI binary semiconductors. The proposal consists of three key parts. First, 2D nanoplatelets with optimized properties are obtained and tuned via chemical synthesis. Second, anisotropic interactions between 2D nanoplatelets of dissimilar materials are exploited for nanoplatelet assembly into heterostructured ribbons and layers. Third, the figures of merit for energy transfer and charge separation in the assemblies are obtained by spectroscopic, photochemical and photoelectric characterisations. The resulting assemblies would constitute a new class of artificial excitonic materials, expanding the family of optoelectronic heterostructures beyond epitaxially grown semiconductors and mechanically stacked exfoliated 2D materials. The proposed research project combines the strengths of the experienced researcher and capabilities of the host institution in a complementary fashion, assuring mutual benefit from the Fellowship and providing the experienced researcher with opportunities to achieve a high level of professional maturity and significantly expand his career opportunities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 168 277,20
Address
VIA MOREGO 30
16163 GENOVA
Italy

See on map

Region
Nord-Ovest Liguria Genova
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 168 277,20
My booklet 0 0