Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Superconductive MiR phOton Counter

Objective

Quantum measurements based on single photon detectors (SPDs) can be efficiently carried out in the visible and near-infrared spectra due to the presence of two well-established technologies named silicon avalanche photodiodes and superconductive nanowire SPDs (SNSPDs). However, the mid-infrared (MIR) spectral range suffers from the absence of a fast SPD with high system detection efficiency (SDE) due to the lack of a competitive semiconductor technology or the poor absorption of the SNSPD systems showed so far. Vibrational modes of molecules and absorption bands of gases resides in this wavelength range, making a detector sensible to MIR single photons extremely sought for sensing and vibrational spectroscopy. Additionally, this wavelength range can be used efficiently for free-space QKD, being robust against adverse weather conditions. These are only but a few of the numerous applications that would benefit or be enabled by a performant SPD.
The research goal of this proposal is to realize a Superconductive MiR phOton Counter (ShaMROCk) that outclasses all the existing technologies in terms of SDE, providing a solid platform for additional functionalities. SNSPDs realized so far suffered from the top-coupling approach that limits the interaction length between photons and the detector active area since the large diffraction limited mode of MIR light and the lack of MIR optical cavities. On the other side, in ShaMROCk I intend to integrate SNSPDs on top of MIR waveguides, realized using silicon carbide. All the light propagating inside the waveguide, evanescently coupled to the active are of the detector, can be absorbed in this way. The SDE is therefore limited by the efficiency with which light is coupled from a fiber to a waveguide. Preliminary results shows that ShaMROCk could provide a SDE twenty times higher than top-coupling SNSPD and two order of magnitude higher than other pursued technologies. This project will pave the way for MIR quantum measurements.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

CONSIGLIO NAZIONALE DELLE RICERCHE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 168 277,20
Address
PIAZZALE ALDO MORO 7
00185 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 168 277,20
My booklet 0 0