Objective Recent studies have shown a globally increasing vegetation cover, also known as the greening Earth. Elevated atmospheric CO2 has been identified as the main driver of this greening. On the contrary, human management is usually reported to cause land degradation and deforestation, especially in humid areas where population pressure is high. This project aims at challenging this simplistic view by introducing the Chinese karst regions as a study area known as one of the world’s most fragile and degraded ecosystems, but also a hot-spot of global greening hosting mega-engineering conservation projects which are the largest in human history. Here my research hypothesis is that conservation efforts in China’s karst regions offset degradation and lead to an increased carbon sequestration with global impact. I aim to (1) develop methods to assess aboveground biomass carbon (ABC) losses and gains with newest satellite data, (2) attribute ABC dynamics to conservation and degradation using inventory data, (3) test the sensitivity of ABC to climate extremes and explain how conservation efforts affect these, and (4) assess the regional and global impact of observed ABC changes as a climate change mitigation measure. Whereas the host institution is world leading in satellite based assessments of climate induced greening of global drylands, me and my project will add a new dimension to the host’s portfolio: the human induced greening of a humid zone. Moreover, the host is world leading in the application of newest satellite data for vegetation cover and ABC assessments and has direct contacts to data developers (e.g. vegetation optical depth based on low frequency passive microwave data). The combination of (a) my regional knowledge, my access to inventory data and contacts to Chinese stake-holders with (b) the host’s experience in data processing and scientific publishing will generate novel knowledge on human induced carbon sequestration as a climate change mitigation measure. Fields of science engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringsatellite technologynatural sciencesbiological sciencesecologyecosystemsnatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changesnatural sciencescomputer and information sciencesdata sciencedata processingagricultural sciencesagricultural biotechnologybiomass Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2017 - Individual Fellowships Call for proposal H2020-MSCA-IF-2017 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator KOBENHAVNS UNIVERSITET Net EU contribution € 200 194,80 Address Norregade 10 1165 Kobenhavn Denmark See on map Region Danmark Hovedstaden Byen København Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00