Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ultracold Molecules in Optical Trap Arrays

Objective

Classical computers quickly hit the brick wall when asked to model the behavior of interacting quantum systems. For example, calculating the time evolution of a quantum system consisting of only 40 interacting spin-½ particles is believed to be fundamentally impossible on a classical computer. Fortunately, the direct investigation of such systems is coming into the reach of today’s most powerful quantum simulators. In this approach, a controllable quantum system is used to model the behavior of other less accessible systems of interest. I plan to make a versatile, reconfigurable array of strongly-polar Calcium Monofluoride (CaF) molecules, and investigate its utility as a scalable quantum simulator. These ultracold molecules have long lifetimes and interact over large distances via their strong electric and magnetic dipole moments. They can thus be used to investigate a wide range of many-body quantum phenomena and are promising candidates for the simulation of lattice spin models, which are omnipresent in condensed matter physics.
In the Center for Cold Matter at Imperial College London, CaF has recently been magneto-optically trapped and laser-cooled to a record-breaking temperature of 50µK. As an MSCA fellow I will build upon these results. I will develop techniques to confine a single CaF molecule in an optical tweezer trap, then assemble a controllable array of molecules using multiple tweezer traps, and finally investigate the entangling dipole-dipole interaction between two neighboring molecules by coherent microwave control. These experiments will take place in a complexity regime where results can still be numerically simulated and will thus serve as benchmark tests of a future scalable quantum simulator.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0