Objective
Mechanical forces play crucial roles in the formation and maturation of many organelles and membrane vesicles. Many of these forces originate in the action of cytoskeletal motors, but how these motors are activated and how their mechanical functions are regulated in the cell are poorly understood. Rather than being “always on” machines, motors must often be specifically activated for distinct mechanical roles by partners.
The MELANCHOR project seeks to uncover how Myosin VI (Myo6) promotes two cell processes through specific interaction with partners that promote different Myo6 dimerisation modes with unique mechanical properties. Myo6:GIPC1 complexes aid in endosomal trafficking through the actin cortex while Myo6:Optineurin complexes promote melanosome biogenesis through a membrane recycling pathway.
Two complementary approaches will uncover the functions of Myo6. (1) Optogenetic tools will control Myo6 targeting to endosomes or melanosomes in live cells, with simultaneous functional imaging, to precisely localize the effect of Myo6 in space and time. (2) Novel in vitro motility methods will determine the effect of different Myo6 partners on Myo6 activation and mechanics under tension. Finally, a combined approach will address the mechanical role of Myo6 in these organelles– whether it is a tension-bearing anchor, transporter or weak tether.
The MELANCHOR project raises the exciting prospect of using optogenetic tools to provide real-time information on subcellular mechanics. By integrating cellular and in vitro approaches to measure the tension in individual Myo6 motors, an unprecedented level of detail on the cellular function of motors will be made possible. These novel techniques will help shed light on motor function in processes such as intracellular trafficking, cell migration, and cancer cell proliferation, invasion and metastasis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering waste management waste treatment processes recycling
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences biochemistry biomolecules lipids
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75231 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.