Periodic Reporting for period 1 - SYMMUNITY (SYMbiosis, Microbiota and immUNITY)
Reporting period: 2019-04-01 to 2021-03-31
I have successfully characterized microbiomes from 60 ant species (50 different genera across 10 out of 12 total existing subfamilies) using 16S amplicon sequencing. The majority of microbiotas does not evolve phylogenetically with the their host diversification. There are two clades of ant species, representing four different genera (Camponotus, Polyrhachis, Myrmecina, Acanthomyrmex), that show significant signs of phylosymbiosis. Preliminary results further suggest that the host symbiotic bacteria belonging to Enterobacteriaceae is likely to be the candidate partners of these phylosymbiotic relationships. Additionally, there is an overall trend that diet specialization correlates with microbiota diversity, albeit insignificant with the present data. In general, the predatory strategies appear to maintain richer microbiota diversity than other diet strategies.
Using the combination of hierarchical clustering (microbiome) and phylogenetics (ant phylogenome), I tested whether and where the phylosymbiotic signals (examining whether host phylogeny is congruent with microbiota composition similarity) could potentially exist across the Ant Tree of Life with amplicon sequencing data obtained. My analyses suggested that there are two ant phylogenetic clade where phylosymbiotic signal is significant (between Myrmecina and Acanthomyrmex; Camponotus and Polyrhachis). These signals indicate that these microbiota evolve phylogenetically with their host lineages regardless other biotic and abiotic factors of hosts.
Using a wide range of diversity indices, I investigated the potential correlations between microbiota compositions and hosts. Generally the results show very complex patterns with no obvious correlations detected between microbiotas and hosts’ traits, except the host diet specialization somewhat correlates with their microbiota variation. More specifically, predatory strategies appear leading to more diverse composition of the microbiota, i.e. higher microbiota alpha diversity.