Objective
Understanding matter on its fastest timescales is of major interest in order to answer fundamental questions in physics, chemistry and biology. With the advent of attosecond pulses (1as=10^-18s), atoms, molecules and solids can be deeply excited in a quasi-instantaneous manner leading to ultrafast processes. While electrons can respond to the excitation in only a few-10as to a few tens of femtoseconds (fs), nuclear motions take place in a few-fs to picoseconds (ps). The real challenge is how to probe those dynamics when they are strongly coupled.
Attosecond streaking (one attosecond pulse to excite the system, one infrared fs pulse to probe the dynamics) is the most accurate temporal metrology ever implemented. Sub-10as delays have been measured with the accuracy of only a few attoseconds. However, the window of observation is limited to the half optical period of the probe pulse and only dynamics on the fs-timescale can be time-resolved. On the other hand, using a terahertz field as a probe offers a wider window of observation of the ps, but with a low resolution of ~10fs. Unfortunately, vibronic dynamics in which nuclear and electronic motions are strongly coupled occur on an intermediate timescale of a few-fs. The objective of the MIRed Streak project is to develop an intense source of mid-infrared pulses (MIR, wavelength between 5 and 20 microns) to follow the couplings of electron and nuclei dynamics in polyatomic molecules over several 10fs with sub-100as accuracy.
This project will provide a powerful novel tool to access a nonesuch insight of ultrafast processes in matter. After studying vibronic dynamics in simple molecules and probing isotopic and mass effects, the long-term objective is to investigate more complex systems such as amino acids and nucleobases, which play an essential role e.g. in the photoprotection of DNA to UV light. Understanding vibronic dynamics will provide a deep insight into the nature of chemical bonds.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences biological sciences genetics DNA
- natural sciences chemical sciences organic chemistry amines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.