Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Intramembrane chaperones : their role in folding membrane proteins

Objective

Membrane proteins constitute about 30 % of the eukaryotic proteome and are involved in crucial processes such as transporting molecules across membranes, mediating intracellular trafficking and functioning as signalling receptors. Most membrane proteins of varied topologies and functions are assembled in the endoplasmic reticulum (ER). While a lot is known about the protein quality control machinery in the ER, most studies have focussed on soluble lumenal proteins or domains that are accessible to the soluble ER chaperones. The complex transmembrane domains however, require assistance within the lipid bilayer. The underlying mechanism of how membrane proteins are correctly folded and assembled, remains unclear.
The main goal of my project is to identify intramembrane chaperones involved in folding of membrane proteins. I plan to use ABC transporter proteins as a paradigm for multi-spanning membrane proteins with complex topologies. Using proximity-dependent biotin identification, I will screen for membrane proteins in the ER that interact with the ABC transporters. Gene silencing using CRISPR-Cas9 will demonstrate whether the interaction has a functional relevance for the stability and assembly of the ABC transporter. Building on this analysis, I plan to determine the influence of the identified chaperones by employing various biochemical techniques. My work will not only identify novel intramembrane chaperones, but will also add a spatio-temporal resolution in dissecting assisted folding of membrane proteins. A comprehensive understanding of intramembrane chaperoning will have highly relevant implications for pharmaceutical industries and will provide a basis for more selective therapeutic interventions against many membrane protein-misfolding diseases.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 177 598,80
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 177 598,80
My booklet 0 0