Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Practical Imaging and Inversion of Transient Light Transport

Project description

The novel imaging technique of an optical echo for practical use

Transient imaging (TI) is revolutionising the computer graphics and computer vision market. It facilitates the detection of objects through information from the temporal domain at pico- and nano-second-resolution, and the capturing, reconstructing or simulating of light transport. This makes it possible to show movies of light in motion, see around corners, detect objects in highly-scattering media or infer material properties from a distance. But due to its high-end arrangements, TI has so far been used only in laboratories. The EU-funded ECHO project aims to develop a novelty camera system by introducing computational TI (CTI). It will allow researchers to distinguish and explore the ‘optical echoes’ of objects through lightweight capture of transient data in real time, offering many advanced solutions and enabling numerous applications.

Objective

The automated analysis of visual data is a key enabler for industrial and consumer technologies and of immense economic
and social importance. Its main challenge is in the inherent ambiguity of images due to the very mechanism of image
capture: light reaching a pixel on different paths or at different times is mixed irreversibly. Consequently, even after
decades of extensive research, problems like deblurring or descattering, geometry/material estimation or motion tracking
are still largely unsolved and will remain so in the foreseeable future.
Transient imaging (TI) tackles this problem by recording ultrafast optical echoes that unmix light contributions by the total
pathlength. So far, TI used to require high-end measurement setups. By introducing computational TI (CTI), we paved the
way for a lightweight capture of transient data using consumer hardware. We showed the potential of CTI in scenarios like
robust range measurement, descattering and imaging of objects outside the line of sight – tasks that had been considered
difficult to impossible so far.
The ECHO project is rooted in computer graphics and computational imaging. In it, we will overcome the practical limitations that are hampering a large-scale deployment of TI: the time required for data capture and to reconstruct the
desired information, both in the order of seconds to minutes, a lack of dedicated image priors and of quality guarantees for
the reconstruction, the limited accuracy and performance of forward models and the lack of ground-truth data and
benchmark methods.
Over the course of ECHO, we will pioneer advanced capture setups and strategies, signal formation models, priors and numerical
methods, for the first time enabling real-time reconstruction and analysis of transient light transport in complex and dynamic
scenes. The methodology developed in this far-reaching project will turn TI from a research technology into a family of
practical tools that will immediately benefit many applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 525 840,00
Address
REGINA PACIS WEG 3
53113 BONN
Germany

See on map

Region
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 525 840,00

Beneficiaries (1)

My booklet 0 0