Objective The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts. The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells. Fields of science engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energynatural sciencesphysical sciencescondensed matter physicssoft matter physicsengineering and technologyenvironmental engineeringenergy and fuelsfuel cellsengineering and technologyenvironmental engineeringenergy and fuelsenergy conversionnatural sciencesphysical sciencestheoretical physicsparticle physicsphotons Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2018-STG - ERC Starting Grant Call for proposal ERC-2018-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN Net EU contribution € 1 500 000,00 Address Geschwister scholl platz 1 80539 Muenchen Germany See on map Region Bayern Oberbayern München, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN Germany Net EU contribution € 1 500 000,00 Address Geschwister scholl platz 1 80539 Muenchen See on map Region Bayern Oberbayern München, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00