CORDIS - EU research results

Exploiting Energy Flow in Plasmonic-Catalytic Colloids


The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.

CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.

The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.

Host institution

Net EU contribution
€ 1 500 000,00
80539 Muenchen

See on map

Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Total cost
€ 1 500 000,00

Beneficiaries (1)