Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Superelastic Porous Structures for Efficient Elastocaloric Cooling

Project description

Innovative elastocaloric concept for cooling technology

The demand for various cooling methods is increasing worldwide. However, standard refrigeration technology relying on vapour compression is inefficient and environmentally harmful. Elastocaloric cooling is a promising solid-state refrigeration technology. Nevertheless, it faces two fundamental challenges, concerning the geometry of the elastocaloric regenerator and the existence of a driver mechanism to support the unloading of this generator. The EU-funded SUPERCOOL project will apply a unique approach to design advanced elastocaloric regenerators with complex structures and a driver mechanism based on the force-recovery principle. The project will combine key elements of this innovative elastocaloric concept into a prototype device, providing cooling technology with greater efficiency and reduced pollution.

Objective

Cooling, refrigeration and air-conditioning are crucial for our modern society. In the last decade, the global demands for cooling are growing exponentially. The standard refrigeration technology, based on vapour compression, is old, inefficient and environmentally harmful. In the SUPERCOOL project we will exploit the potential of elastocaloric cooling, probably the most promising solid-state refrigeration technology, which utilizes the latent heat associated with the martensitic transformation in superelastic shape-memory alloys. We have already demonstrated a novel concept of utilizing the elastocaloric effect (eCE) by introducing a superelastic porous structure in an elastocaloric regenerative thermodynamic cycle. Our preliminary results, recently published in Nature Energy, show the tremendous potential of such a system. However, two fundamental challenges remain. First, we need to create a geometry of the superelastic porous structure (elastocaloric regenerator) to ensure sufficient fatigue life, a large eCE and rapid heat transfer. Second, we must have a driver mechanism that can effectively utilize the work released during the unloading of the elastocaloric regenerator. To succeed I am proposing a unique approach to design advanced elastocaloric regenerators with complex structures together with a driver mechanism with the force-recovery principle. We will employ a systematic characterization and bottom-up linking of all three crucial aspects of the elastocaloric regenerator, i.e. the thermo-hydraulic properties, the stability and the structural fatigue, together with a new solution for force recovery in effective drivers. Based on these theoretical, numerical and experimental results we will combine both key elements of our novel elastocaloric concept into a prototype device, which could be the first major breakthrough in cooling technologies for 100 years, providing greater efficiency and reduced levels of pollution, by applying a solid-state refrigerant.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

UNIVERZA V LJUBLJANI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 359 375,00
Address
KONGRESNI TRG 12
1000 Ljubljana
Slovenia

See on map

Region
Slovenija Zahodna Slovenija Osrednjeslovenska
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 359 375,00

Beneficiaries (1)

My booklet 0 0