Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Seismic Testing of 3D Printed Miniature Masonry in a Geotechnical Centrifuge

Project description

Novel 3D method for seismic testing

Earthquakes are among the deadliest natural disasters creating an urgent need to test buildings’ seismic response, particularly of masonry structures as there is a lack of knowledge regarding these structures’ behaviour. Shake table testing is a solution, however full-scale system-level testing of large buildings is possible only in a handful of shake tables, at a great expense. The EU-funded MiniMasonryTesting project will create a revolutionary method to conduct system-level testing at a small scale, using 3D printers and a geotechnical centrifuge. This will be made possible by printing masonry-like materials. As a case study, the proposed method will explore a seismic isolation method for masonry structures that could be applicable in developing countries.

Objective

Earthquakes are responsible for more than half of the human losses due to natural disasters. Masonry structures have been proven the most vulnerable both in the developing and in the developed world. Even though Masonry is one of the oldest building materials, our understanding of its behavior at the level of the structure (system level) is limited. Therefore, there is a need for extended shake table testing. But shake table tests are expensive and full-scale system-level testing of large buildings is only possible in a handful of shake tables in the globe – and at a huge cost.

We propose to take advantage of research developments in 3D printing and develop a method to perform system-level testing at a small scale using 3D printers and a geotechnical centrifuge (to preserve similitude). The key is to print materials with behavior controllable and similar to masonry. MiniMasonry testing proposes to control the properties of masonry via controlling the geometry of a 3D printed “meta”-mortar. The method will be developed via typical static masonry tests performed on the 3D printed parts. It will be further validated via comparing shaking table tests (in a centrifuge) of miniature structures to existing results of full-scale tests. The cost of the dynamic tests is expected to be so low, that multiple tests can be performed, so that existing numerical methods can be validated in the statistical sense. As a case study, the method will be applied to explore the behavior of a low-cost seismic isolation method that has been proposed for masonry structures in developing countries.

With the rapid evolution of 3D printing, it will be possible to scale-up the methods developed in MiniMasonryTesting, so that other Civil Engineering materials can be tested faster and cheaper than now. This is a game changer in structural testing, as it will enable researchers to test structures that up to now it was impossible or very expensive to test at a system level.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

ETHNICON METSOVION POLYTECHNION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 143 535,81
Address
HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS
157 72 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 143 535,81

Beneficiaries (2)

My booklet 0 0