Objective
Active particles refer to out-of-equilibrium self-propulsive objects such as biological microswimmers and engineered colloidal particles that can form various fascinating collective states. Active particles are easy to observe experimentally but notoriously difficult to interact with due to their fast and stochastic dynamics at both single-particle and collective state levels. In this project, I aim at scientific breakthrough in both instrumentation that allows direct interaction with active particles and using the methodology to progress substantially our understanding of dynamics and phase transitions of active particles.
The first part focuses on rendering active particles, including E. coli, C. reinhardtii and Quincke rollers, permanently magnetized and designing suitable hardware for controlling them in real time. These particles are rendered “intelligent” by programming their behavior based on real-time image analysis (long-range vision) and steering with external magnetic field. I will program these particles to reveal the limits of using local dissipative hydrodynamic near-fields to guiding active particles, and demonstrate unambiguously the extent to which a single active particle within a collective state can control the collective behaviour.
The second part aims at realizing tuneable magnetic traps and other conservative potential energy landscapes for non-magnetic active particles by using magnetophoresis in superparamagnetic fluids. I will use the technique to establishing confinement-activity phase diagrams for both biological (C. reinhardtii) and synthetic (Quincke rollers) active particles in quadratic confinements. I will further reveal the role of dimensionality (1D vs 2D vs 3D) in the phase transitions of active particles and carry out the seminal investigation of active particles in periodic potentials.
The results and methodologies will have a major impact, both immediately and in long-term, on experimental physics of active particles.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.