Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies

Objective

With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 493 269,00
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 493 269,00

Beneficiaries (1)

My booklet 0 0