Periodic Reporting for period 1 - NOXTEK (NOx-Mitigation Technology for Retrofitting Diesel Engines)
Reporting period: 2018-02-01 to 2018-07-31
The key challenge is to find efficient, timely and cost-effective solutions to reduce the exposure of pollutant gases to people and to find solutions to meet the ever-tightening regulatory requirements around diesel engines, as a transition technology towards a fossil-fuel-free economy, in Europe and diesel-reliant economies in Asia and Africa.
NOXTEK is a ground-breaking absorbent material with the potential for immediate deployment within vehicle cabin filtration system to have an immediate effect of protecting vehicle occupants from harmful gasses. Furthermore, there is significant potential for utilization within Exhaust Emissions Treatment Systems.
Further analysis and independent expert opinions have been obtained to augment arguments against perceived weaknesses with our application. This additional evidence is clear and adds significant value to our understanding and patent strategy.
Alsitek has completed in-depth techno economic modelling of the expected supply chain for the manufacture and supply of the filter media, absorbents and assembly of products for the automotive industry. We have identified key risks, determined resource requirements and mapped routes to market. MRL3 has been achieved and planned trials to take us to MRL5.
BUSINESS PLAN
Phase 1: Develop applications utilising NOXTEK for vehicle cabin filtration.
Phase 2: Develop applications utilising NOXTEK with exhaust emissions treatment systems.
Phase 3: Expand further in larger exhaust emissions treatment and chemical processing emissions treatment.
Our target is to have 5% of all class D to G vehicles on the road in the EU with a filter containing NOXTEK within 5 years (approximately 6 million vehicles). We expect that this filter will remove up to 90% of NO2 from in-coming air into the vehicle cabin. Current levels of average NO2 whilst driving are approximately 140µg/m3. With a 90% removal rate this will bring average exposure levels whilst driving to 14µg/m3 – well within the WHO guidelines of 40µg/m3 save levels.
Current state-of-the-art filter performance achieves approximately 30% removal. However, the absorptions properties of AC decrease substantially when atmospheric humidity increases and stops above 70%. Secondly the catalytic function of AC on NO2 is noticeably affected during the ageing process of the filter.
This reduction in exposure will have significant health benefits, especially for young children on school commutes when the lungs are developing and NO2 exposure can also be harmful on the cardiology, attention capacity and cognitive function of young children.
The production methods for AC have known high environmental impact. Reducing the pressure on the environment by introducing alterative technology with a far less harmful environmental impact can only have a positive effect. Forest clearance burning for mono-culture planting of coconut plantations was responsible for 40% of the global annual CO2 emissions in 1997. Other environmental issues include loss of key habitats, large scale forest conversion, loss of critical habitats, and severe soil erosion and silting of eco-systems linked to monoculture farming which are irrefutably linked to the 1000% increase in demand between 2008 and 2014.