Objective
The antigenic evolution of influenza is conventionally assumed to occur by ‘antigenic drift’ where new strains arise through the incremental addition of mutations in surface glycoproteins. However, the antigenic drift model can only explain the epidemiology and limited genetic diversity observed among influenza virus populations by imposing constraints on the mode and tempo of mutation. We have shown that an alternative model known as ‘antigenic thrift’ successfully models the epidemiology and genetic diversity of influenza by assuming that the antigenic evolution of the virus population is primarily driven by natural immune responses against epitopes of limited variability. We have identified epitopes of limited variability in H1, H3 and influenza B. Each epitope has between 3 and 4 different conformations. These epitope conformations are all in the head domain of the HAs of various subtypes, making them naturally highly immunogenic. The epitope are also limited in variability, often due to their position adjacent to the receptor binding site, cycling through their limited repertoire of conformations as host population immunity changes. By vaccinating against these epitope conformations for each subtype, we can induce immunity against all past and present H1, H3 and influenza B. This approach will remove the need to vaccinate each year and have much higher levels of efficacy. The vaccine can also be made using the established methods of inactivated or attenuated influenza vaccine production. This maintains a price threshold of 5 USD per dose, making the vaccine attractive to pharmaceutical companies, and by reducing the number of doses required to confer immunity and while maintaining production cost, the vaccine is attractive to healthcare providers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology virology
- medical and health sciences health sciences public health epidemiology
- medical and health sciences health sciences infectious diseases RNA viruses influenza
- medical and health sciences basic medicine immunology
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs vaccines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.