European Commission logo
English English
CORDIS - EU research results
CORDIS

Single Molecule Imaging Mass Spectrometry

Project description

New microscopy technology could accelerate drug development

The EU-funded SMIMS project aims to demonstrate the wide potential of interferometric scattering microscopy for mass spectrometry of single biomolecules in solution. Researchers plan to produce a near market ready prototype and implement the required software modifications to demonstrate that the technology is sufficiently robust to warrant venture capital funding for a spin-out company. This portable instrument will enable on-site testing on a broad range of potential analytes and environments. Novel, broadly accessible microscopy technology could offer new opportunities for screening potential drug candidates and further our understanding of drug interactions at the molecular level.

Objective

We aim to demonstrate the disruptive commercial and societal potential of interferometric scattering microscopy for mass spectrometry of single biomolecules in solution. The PoC grant will be used to produce a near-market ready prototype and implement the required software modifications expected of a commercial device, to demonstrate that the technology is sufficiently robust to warrant venture capital funding for our spin-out company. Our early discussions with both pharma and instrument manufactueres have highlighted a need for more in-depth application of our technique. The novelty of our approach requires both demonstration and testing on a broad range of potential analytes and environments, which is why we require a portable instrument, that not only enables on-site testing, but also on-site demonstration in a non-university research environment. Similarly, there is a clear and pressing need to produce more intuitive and clearly commercially viable software to unlock the full potential of our technology. Data from these experiments will help define our final product(s) and to translate this research into a viable package for raising venture capital. The development of a novel, broadly accessible technology enables new avenues for screening potential drug candidates that could be used to further our understanding of drug interactions at the molecular level. The economic benefits will, therefore, be realised primarily through the pharmaceutical, healthcare and allied industries as well as the bioanalytical industry, through increased sales of instruments. All will have a considerable impact on the European economy. In addition to drug-discovery-related advances, our technology has the potential to transform cholesterol classification and change current approaches to cancer screening, through its intrinsic single molecule sensitivity.

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution
€ 142 050,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 142 050,00

Beneficiaries (1)