Project description
Towards higher-efficiency, lower-cost concentrator photovoltaics
The levelised cost of electricity (LCOE) generated from solar power is expected to significantly fall by 2030, reaching similar levels to those of fossil fuel generation. The EU-funded LC-SOLAR project plans to develop a proof-of-concept concentrator photovoltaic system with half the LCOE compared to that of current photovoltaic technologies. Researchers will build on the achievements of a former EU-funded project, which showed that photoluminescence works as an ideal heat pump, harvesting thermal losses in photovoltaics with a theoretical maximal efficiency of 70 %. Based on cost analysis, a total conversion efficiency of 32 % could yield an LCOE of EUR 0.025 per KWh. This could significantly accelerate renewable energy uptake.
Objective
Replacing fossil-fuels with solar energy in electric power generation is one of the most important challenges to humanity. From an economic point of view, the important parameter is the Levelized Cost of Electricity (LCOE), or Levelized Energy Cost (LEC), which is the net present value of the unit-cost of electricity over the lifetime of an energy generating asset. The minimally expected LCOE for any solar energy system in 2030 is 0.045 [€/kWh], similar to today's Photovoltaics (PV) LCOE, and at the same level as fossil-fuels. In this proposal, we aim to demonstrate a Proof of Concept [PoC] for a low-cost CPV operating at LCOE of 0.025 [€/kWh] (50% reduction of PVs today). The proposal is a direct continuation of our ERC project on new thermodynamic ideas for solar cells, where we demonstrated that; In contrast to thermal emission, photoluminescence (PL) rate is conserved when the temperature increases, while each photon is blue-shifted (photon-energy increased). We also demonstrated how such Thermally Enhanced-PL (TEPL) generates more energetic photons, by orders of magnitude, than thermal emission at similar temperatures. These findings show that PL is an ideal optical heat pump, and can harvest thermal losses in photovoltaics with a theoretical maximal efficiency of 70%, and a practical device/solution that can reach 48% efficiency. In our preliminary unpublished work, we demonstrate 42% TEPL efficiency compared to an ideal-PV. The challenge in this PoC is to demonstrate photon recycling, photon management, and thermal management, where the maximum of the PL is converted to electricity in an operating PV. We also performed a detailed breakdown of the costs related to TEPL based device. Based on our cost analysis, achieving 32% total conversion efficiency without a cooling system supports LCOE of 0.025 [€/kWh], which will significantly accelerate the usage of renewable energy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.