Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Reliable Data-Driven Decision Making in Cyber-Physical Systems

Project description

Taking reinforcement learning to a whole new level

Reinforcement learning (RL) is the training of machine learning models to make a sequence of decisions, with great potential to help increase automation. The EU-funded RADDICS project seeks to overcome key challenges for reliable deployment of RL methods in high-stakes applications. Specifically, it investigates the use of probabilistic models, such as Gaussian processes and deep Bayesian models, to enable safe exploration. To this end, it combines confidence estimates from these models with techniques from robust control theory and formal verification. The research builds on recent breakthrough results on safe Bayesian optimisation, and is demonstrated on three real-world cyber-physical systems applications.

Objective

This ERC project pushes the boundary of reliable data-driven decision making in cyber-physical systems (CPS), by bridging reinforcement learning (RL), nonparametric estimation and robust optimization. RL is a powerful abstraction of decision making under uncertainty and has witnessed dramatic recent breakthroughs. Most of these successes have been in games such as Go - well specified, closed environments that - given enough computing power - can be extensively simulated and explored. In real-world CPS, however, accurate simulations are rarely available, and exploration in these applications is a highly dangerous proposition.

We strive to rethink Reinforcement Learning from the perspective of reliability and robustness required by real-world applications. We build on our recent breakthrough result on safe Bayesian optimization (SAFE-OPT): The approach allows - for the first time - to identify provably near-optimal policies in episodic RL tasks, while guaranteeing under some regularity assumptions that with high probability no unsafe states are visited - even if the set of safe parameter values is a priori unknown.

While extremely promising, this result has several fundamental limitations, which we seek to overcome in this ERC project. To this end we will (1) go beyond low-dimensional Gaussian process models and towards much richer deep Bayesian models; (2) go beyond episodic tasks, by explicitly reasoning about the dynamics and employing ideas from robust control theory and (3) tackle bootstrapping of safe initial policies by bridging simulations and real-world experiments via multi-fidelity Bayesian optimization, and by pursuing safe active imitation learning.

Our research is motivated by three real-world CPS applications, which we pursue in interdisciplinary collaboration: Safe exploration of and with robotic platforms; tuning the energy efficiency of photovoltaic powerplants and safely optimizing the performance of a Free Electron Laser.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-COG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 996 500,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 996 500,00

Beneficiaries (1)

My booklet 0 0