Project description
More autonomous satellites thanks to onboard AI
The microsatellite and conventional satellite market is growing rapidly, supporting important services including communications and Earth observation. While other systems from industrial robots to cars are becoming increasingly autonomous, satellites have not followed this trend. The Italian SME AIKO has developed MiRAGE, the first AI-based in-flight software designed to allow increased mission autonomy for microsatellites and conventional satellites. The software will not only enable faster responses to potential problems but also slash the manpower required to command and control the satellites and their missions. The EU-funded MiRAGE project is validating the compatibility of MiRAGE with most microsatellites’ and conventional satellites’ onboard computing architectures in preparation for commercialisation.
Objective
There are currently around 1,600 active satellites orbiting around the Earth, and more than 4,500 will be launched within 2026. None of them is designed to be autonomous. For a standard mission, this turns into a time span of several hours to detect system failures, to perform orbit and attitude correction, and to identify important mission events as monitoring of forest fires, flooding, or acquisition of important scientific data. In an era where Artificial Intelligence is making cars and other systems smarter and more autonomous, at AIKO Space we have seen a huge market opportunity in endowing spacecraft with AI-based capabilities. We are a team of experts in aerospace engineering and Artificial Intelligence, and we have developed MiRAGE, the first in-flight software on the market based on AI and designed to allow increased mission autonomy for micro (< 50kg) and conventional satellites. MiRAGE has proved that an important mission indicator as the “personnel to spacecraft ratio” can be decreased by the current average value of 2.5 to 0.1 thus providing a substantial value to customers as satellite manufacturers and satellite operators. The product development roadmap is now focused on validating the compatibility of MiRAGE with most micro and conventional satellites’ onboard computing architectures (Phase 1), which will also allow us to have a more thorough assessment of the actual market potential of our solution. The following step will be to proceed with system engineering and preparation to the in-orbit validation (Phase 2) together with large prospective customers, which will pave the way to the beginning of the commercialization phase in Q4 2020. We plan to install MiRAGE in more than 250 satellites by 2022, generating a turnover of more than 8 M€ after 3 years of commercialization, and targeting EBITDA levels in the range of 45%, in line with the standard in the sector.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence
- natural sciences computer and information sciences software
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10123 Torino
Italy
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.