CORDIS - Résultats de la recherche de l’UE
CORDIS

Creating complexity: toward atomic spin-based neural hardware

Description du projet

Les spins atomiques pourraient dynamiser les secteurs des TIC et de l’informatique

Il y a près d’un demi-siècle, Gordon Moore, cofondateur d’Intel, prédisait que le nombre de transistors sur une puce doublerait tous les deux ans, ce qui augmenterait considérablement la puissance de calcul tout en réduisant les coûts. Sa prédiction s’est vérifiée pendant des décennies, mais elle a progressivement décliné, en grande partie à cause des problèmes d’énergie et de chaleur liés à l’intégration d’un si grand nombre de transistors dans des espaces de plus en plus réduits. Le projet SPINAPSE, financé par l’UE, suit l’exemple de la nature en s’inspirant de la consommation d’énergie incroyablement faible du cerveau, et ce malgré la vitesse et la puissance incroyablement élevées de ses «calculs». L’équipe met au point un nouveau matériel inspiré du cerveau, basé sur les spins atomiques, qui permettra d’ouvrir la voie aux paradigmes de calcul des TIC.

Objectif

The growing trend in global electricity consumption has created a new challenge for materials-based science: to find computational paradigms toward ICT that are not only smaller and faster, but also energy-efficient. A new source of inspiration is the human brain, which consumes a mere 20 W of energy, while a supercomputer consumes about 10 MW. The emerging field of brain-inspired hardware aims at utilizing physical phenomena in high-quality materials toward pattern recognition and energy- efficient ICT. The goal of this project is to adapt the principles of magnetism toward brain-inspired hardware, utilizing individual and coupled atomic spins. The ultimate aim of SPINAPSE is to probe the feasibility and create proof-of-concept systems, which demonstrate computational principles such as pattern recognition. I define three objectives, which address understanding magnetism in the three most prominent neural models: (1) Hopfield model, (2) Perceptron, (3) Reservoir computing. The strategy is to utilize the so-called spin workbench, based on low-temperature scanning tunneling microscopy, as a platform to create tailored spin arrays with atomic-scale control. This method combines single atom magnetic imaging and atom-scale fabrication, enabling the control of the magnetic interactions and dynamics between ensembles of atoms, atom by atom. We will construct bottom-up magnetic nanostructures to implement all-spin and atomic-scale based neural hardware. We will deliver a new state of the art in magnetic imaging, including (a) developing the spin workbench with a newly built 30 mK magnetic STM facility, defining a new state of the art in magnetic imaging worldwide, and (b) time-resolved imaging to probe the magnetization dynamics of stochastic spin arrays at milliKelvin temperatures. The outcome of SPINAPSE will deliver a new state of the art, new fundamental understandings, and create proof-of-concept technologies for atomic-scale brain-inspired hardware.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

STICHTING RADBOUD UNIVERSITEIT
Contribution nette de l'UE
€ 2 357 390,00
Adresse
HOUTLAAN 4
6525 XZ Nijmegen
Pays-Bas

Voir sur la carte

Région
Oost-Nederland Gelderland Arnhem/Nijmegen
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 357 390,00

Bénéficiaires (1)