Project description
A clearer understanding of ionic interactions in natural crystallisation processes
Crystallisation, the formation of a chemical's solid crystal state from a liquid one, is widespread in nature. Understanding natural crystallisation processes in the crust and magma of the earth is relevant to water security and climate change. Nucleation, the point at which the crystal starts to grow rather than dissolving back into solution, defines the crystal structure. The role of charge in nucleation in natural solutions and the effect of those charged crystals on the formation of new crystals is largely unknown. The EU-funded CRYSTAL CLEAR project is enhancing the predictive power of natural nucleation models to help us tackle important challenges with a clearer vision.
Objective
All of the crystals that form in water on Earth are formed through reaction between oppositely charged ions. In these crystals, the ions are present in an ideal, charge-balanced ionic ratio. In contrast, the natural solutions in which they form, contain widely diverging ionic ratios. When crystals nucleate from natural solutions, they will be charged, and charge has a massive impact on the behaviour of small new crystals.
Most nucleation experiments have been conducted in solutions with charge-balanced ionic ratios. This leads to uncharged crystal formation, which can be described with nucleation theories based on uncharged gas condensation into droplets. My pilot data show that this does not apply when ionic ratios diverge. New crystals then form and grow much slower than expected. Similarly, in natural solutions, crystals are often expected to form, but they do not, and vice versa. Clearly, we still have no idea how, why and how fast crystals nucleate in Earth surface environments.
In this project, I will test the hypothesis that ionic ratio has a dramatic impact on nucleation: crystals will be charged, and this charge will determine their size, how and how fast they grow, aggregate, and transform.
I will conduct state-of-the-art experiments and analyses that will provide in situ knowledge of the impact of ionic ratio on the charge, size, growth, aggregation and transformation of nuclei. Experiments will be complemented with advanced modelling to derive charged-nuclei stability and surrounding water properties. The results will be assimilated in a new crystal nucleation theory.
CRYSTAL CLEAR will focus on barite, calcite and pyrite as examples of highly relevant Earth Materials. The outcome will be improved geoengineering options such as drinking water production and CO2 sequestration. My project will bring a new vision on crystal formation in nature, with radically improved predictions of rates and mechanisms, and a paradigm shift in nucleation theory.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.