Periodic Reporting for period 3 - ADVANCE (ADVANCE: Sophisticated experiments and optimisation to advance an existing CALPHAD database for next generation TiAl alloys)
Reporting period: 2021-09-01 to 2022-06-30
TiAl is stable at high temperatures with low weight and high strength, i.e. high specific strength, making it a good substitute for Ni-based alloys that have a lower specific strength and are traditionally the material used to make the rotating blades in the last stages of the low-pressure aero engine turbines. The next generation of aero engine designs aims to use TiAl alloys in at least one more stage of the low-pressure turbine because of TiAl alloys’ enormous weight saving potential. To cope with the higher operating temperatures of the more forward stages of the turbine, the temperature capability of TiAl alloys must be increased by 50–100 °C. This temperature requirement is a technical challenge requiring precise scientific data to determine the influence from chemistry on microstructure and its stability for this class of alloy. To be both precise and effective requires predictive simulation capabilities that will enable the evaluation of a large number of potential TiAl alloys in a very short time.
In the ADVANCE project an extensive and ambitious experimental program generated detailed and accurate phase equilibrium data for a series of homogeneous alloys of high purity in the ternary systems Ti-Al-X (X = Nb, Mo, W, O, B, Zr, C, Si) and quaternary systems Ti-Al-Nb-Z (Z = Mo, W). The new data available resolves some of the existing experimental controversies, adds missing data points, and allows for an accurate thermodynamic assessment of these individual subsystems. Furthermore, the new data has been used to extend an advanced CALPHAD database for TiAl alloys. The extended CALPHAD database is capable of rapid computational design and can facilitate the optimization of new TiAl alloys and the respective processing conditions with a high degree of confidence.
To generate samples for equilibrium heat treatment, a diamond wire was used to cut the cast alloys into slices of 2-10 mm thickness. These slice samples were encapsulated and annealed at a range of temperatures and at times sufficiently long to ensure equilibrium. At the end of the project, more than 360 different equilibrium heat treatments have been performed. Following equilibrium heat treatment the samples were subject to metallographic inspection and phase analysis using a range of techniques. These techniques include light optical and scanning electron microscopy (LOM, SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), electron probe microanalyzer (EPMA), differential thermal analysis (DTA), high-energy X-Ray diffraction (HEXRD) and transition electron microscopy (TEM). This work allowed the project team to accurately determine equilibrium phases and the composition, as well as phase transition temperatures, which is all important data needed to better understand the microstructure and chemistry of the chosen alloys. Results from these experimental studies has been disseminated at several scientific conferences, but also published in a series of open access publications.
With this information thermodynamic modelling of the studied ternary Ti-Al-X (X = Nb, Mo, W, O, B, Zr, C, Si) and quaternary Ti-Al-Nb-Z (Z = Mo, W) systems was made applying the Calphad approach. Updated Calphad descriptions for the individual ternary systems were integrated into a thermodynamic Calphad databases which has been validated against independent multicomponent data. This updated thermodynamic Calphad database will become commercially available for use with Thermo-Calc during end of 2022.
This project belongs to the Clean Sky2 initiative and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820647.