Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Upscaling Product development Simulation Capabilities exploiting Artificial inteLligence for Electrified vehicles

Project description

ML predictive models for crash and aerodynamics assessment

High-performance computing (HPC) and computer-aided engineering (CAE) play an instrumental role in the vehicle development process. Of the total automotive HPC usage, approximately 20 % goes to aero/thermal simulations, and up to 50 % of HPC resources to crash simulations. The EU-funded UPSCALE project integrates AI methods directly into traditional physics-based CAE software and methods used in developing road transportation worldwide. The project focuses on AI-methods application to reduce the development time and increase the performance of electrified vehicles, thus reducing global emission levels. UPSCALE has chosen as use cases for the project the two most HPC intensive CAE applications: vehicle aero/thermal modelling and crash modelling.

Objective

UPSCALE is the first EU-project that has the specific goal to integrate artificial intelligence (AI) methods directly into traditional physics-based Computer Aided Engineering (CAE)-software and –methods. These CAE-tools are currently being used to develop road transportation not only in Europe but worldwide. The current focus of the project is to apply AI-methods to reduce the development time and increase the performance of electric vehicles (EVs) which are required by the automotive industry to reduce global emission levels. High performance computing (HPC) and CAE-software and –methods play a decisive role in vehicle development process. In order to make a significant impact on the development process, the two most HPC intensive CAE-applications have been chosen as use cases for the project: vehicle aero/thermal- and crash-modelling. When considering total automotive HPC usage, approximately 20% is used for aero/thermal simulations and up to 50% of HPC resources are utilized for crash simulations. By improving the effectiveness of these two areas, great increases in efficiency will lead to a 20% of reduction of product time to market. Other novel modelling approaches such as reduced order modelling will be coupled to the AI improved CAE-software and -methods to further reduce simulation time and ease the application of optimization tools needed to improve product quality. Through the combined effort of universities, research laboratories, European automotive OEMs, software companies and an AI-SME specialized in machine learning (ML), the UPSCALE project will provide a unique and effective environment to produce novel AI-based CAE-software solutions to improve European automotive competiveness.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-LC-GV-2018-2019-2020

See all projects funded under this call

Coordinator

IDIADA AUTOMOTIVE TECHNOLOGY SA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 474 700,00
Address
L ALBORNAR
43710 Santa Oliva
Spain

See on map

Region
Este Cataluña Tarragona
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 474 700,00

Participants (14)

My booklet 0 0