Project description
Solar technology could replace batteries in IoT devices
Adding basic intelligence objects by outfitting them with wireless sensors has promised to bring a paradigm shift in the way businesses operate. While the potential of IoT is tremendous, it has been slower to reach ubiquity than initially predicted. This is largely due to the disproportionate cost of batteries compared to the low-cost of the IoT system. To counter this issue and enable greater IoT adoption by businesses, the EU-funded Tryst Energy project is working on a module to power connected devices through solar energy. This sustainable alternative to batteries will harvest enough energy to continuously supply power to an IoT sensor in very low light conditions. It can work from only 200 lux and is 13 times more cost-efficient than conventional batteries.
Objective
The IoT sector is emerging: the amount of internet connected devices in the industrial domain is expected to increase to 25 billion in Europe within a few years. The potential of ultralow power industrial IoT starts to disrupt the industry ranging from predictive maintenance on railways, container cargo tracking to smart city sensoring. The vast majority of these devices is equipped with a battery, which results in one of the main obstacles to make a success of the IoT-revolution. The costs of the battery and battery replacement every 3 to 5 years are disproportionate to the total cost of a low power IoT-device, and therefore a major bottleneck for industry companies to start implementing IoT-ecosystems. Furthermore the battery replacement of IoT-devices results in vast amounts of chemical waste and constitutes a complex logistical challenge since a typical low power IoT-ecosystem consists in general of thousands of devices at hard to reach places TWTG R&D B.V. has developed the Tryst module, a sustainable and cost-efficient alternative for batteries by means of light energy harvesting for IoT-devices. The Tryst module harvests enough energy to continuously supply an IoT-sensor in very low light conditions, since it requires only 200 lux light for 4 hours per day. Tryst is the ideal solution since it provides IoT-energy supply which is 13 times more cost-efficient than conventional batteries and dismisses complex battery replacement campaigns. In addition Tryst reduces the projected amounts of chemical waste caused by battery usage in IoT-ecosystems. Therefore the Tryst module is the breakthrough innovation, which will make vast and growing amounts of IoT-batteries dispensable and a necessary enabler to further accelerate the IoT-revolution. To convince the market of the added value of the Tryst module a demonstration project needs to be executed. In the Phase 1 SME instrument project the preparatory actions for this demonstration project are taken.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology civil engineering urban engineering smart cities
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2909 LA CAPELLE AAN DEN IJSSEL
Netherlands
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.