Project description
A new way to study the effects of pushes and pulls on tiny biological structures
Cellular signalling mediates functions as diverse as development, sensory perception, gene regulation and immunity. Our understanding of chemical and electrical signals such as those underlying synaptic transmission has increased greatly with the use of model systems. However, elucidation of critically important biomechanical interactions in biological processes is lagging, in part due to a dearth of sophisticated methods to study them. Bio-Plan is developing a pioneering platform to fill that need. It exploits tiny biomimetic structures, precise control of fluid flow around them, and of course exquisitely sensitive sensors to measure the subsequent forces on them. The system could create a step change in our understanding of the hydrodynamic and mechanical forces involved in fundamental biological processes.
Objective
Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences biological sciences microbiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.