Project description
Investigating the novel conducting properties of bismuth
Topological insulators are one of the most exciting areas in condensed matter physics. The bulk of this new state of quantum matter is insulating; current is carried only by the surface and is nearly dissipation-less. The EU-funded BALLISTOP project will investigate the charge and spin currents in second-order topological insulators. This new class of topological materials includes 3D crystals just like bismuth, which has novel conducting properties on the edges rather than on its bulk or surface. Researchers will further probe the ballistic nature of the 1D helical edge states of bismuth samples. Scanning tunnelling spectroscopy will allow them to observe Majorana particles in bismuth/superconductor particles. Work will open up the way to identify new high-order topological insulators.
Objective
One of the greatest recent achievement in Condensed matter physics is the discovery of a new class of materials, Topological Insulators (TI), whose bulk is insulating, while the edges conduct current in a quasi-ideal way. In particular, the 1D edges of 2DTI realize the Quantum Spin Hall state, where current is carried dissipationlessly by two counter-propagating ballistic edge states with a spin orientation locked to that of the propagation direction (a helical edge state). This opens many possibilities, ranging from dissipationless charge and spin transport at room temperature to new avenues for quantum computing. We propose to investigate charge and spin currents in a newly discovered class of TIs, Second Order Topological Insulators (SOTIs), i.e. 3D crystals with insulating bulk and surfaces, but perfectly conducting (topologically protected) 1D helical “hinge” states. Bismuth, despite its well-known semimetallic character, has recently been shown theoretically to belong to this class of materials, explaining our recent intriguing findings on nanowires. Our goal is to reveal, characterize and exploit the unique properties of SOTIs, in particular the high velocity, ballistic, and dissipationless hinge currents. We will probe crystalline bismuth samples with refined new experimental tools. The superconducting proximity effect will reveal the spatial distribution of conduction paths, and test the ballisticity of the hinge modes (that may coexist with non-topological surface modes). High frequency and tunnel spectroscopies of hybrid superconductor/Bi circuits will probe their topological nature, including the existence of Majorana modes. We will use high sensitivity magnetometers to detect the orbital magnetism of SOTI platelets, which should be dominated by topological edge currents. Lastly, we propose to detect the predicted equilibrium spin currents in 2DTIs and SOTIs via the generated electric field, using single electron transistors-based electrometers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry post-transition metals
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.