Project description
Diatom evolution and speciation
Diatoms are an essential source of food and energy in the ocean. However, although molecular clocks identify diatoms’ evolution starting over 200 million years ago, our knowledge is limited due to the lack of diatoms in the geological record. The EU-funded DEVOCEAN project will assess for the first time the emergence of diatoms and their impact on the global biochemical cycle of silica, carbon and nutrients that control ocean productivity. The project suggests that the proliferation of phytoplankton after the Permian-Triassic extinction has fundamentally influenced oceanic ecosystems. DEVOCEAN will deliver evidence on diatom evolution and speciation in the geological record and fundamental knowledge on the timing of dissolved silicon drawdown and other significant events in the ancient oceans.
Objective
Motivated by a series of recent discoveries, DEVOCEAN will provide the first comprehensive evaluation of the emergence of diatoms and their impact on the global biogeochemical cycle of silica, carbon and other nutrients that regulate ocean productivity and ultimately climate. I propose that the proliferation of phytoplankton that occurred after the Permian-Triassic extinction, in particular the diatoms, fundamentally influenced oceanic environments through the enhancement of carbon export to depth as part of the biological pump. Although molecular clocks suggest that diatoms evolved over 200 Ma ago, this result has been largely ignored because of the lack of diatoms in the geologic fossil record with most studies therefore focused on diversification during the Cenozoic where abundant diatom fossils are found. Much of the older fossil evidence has likely been destroyed by dissolution during diagenesis, subducted or is concealed deep within the Earth under many layers of rock. DEVOCEAN will provide evidence on diatom evolution and speciation in the geological record by examining formations representing locations in which diatoms are likely to have accumulated in ocean sediments. We will generate robust estimates of the timing and magnitude of dissolved Si drawdown following the origin of diatoms using the isotopic silicon composition of fossil sponge spicules and radiolarians. The project will also provide fundamental new insights into the timing of dissolved Si drawdown and other key events, which reorganized the distribution of carbon and nutrients in seawater, changing energy flows and productivity in the biological communities of the ancient oceans.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences economics and business economics production economics productivity
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22100 Lund
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.