Skip to main content
European Commission logo print header

NUclear reactions at RINGs

Project description

Nuclear reaction experiments at ion storage rings

Neutron-induced cross sections of short-lived nuclei are crucial for fundamental studies on nuclear physics and for applications in nuclear technology. However, the limited ability to produce the necessary amounts of radioactive nuclei makes cross-section measurements extremely difficult. Funded by the Marie Skłodowska-Curie Actions programme, the NU-RING project will overcome this issue by combining surrogate reactions with ion storage rings. This scheme offers improved beam quality and ultra-thin targets that should enable very precise excitation energy measurements of the decaying nuclei. Simulations will be conducted to determine the set-up of the first surrogate-reaction measurements at the storage ring of an accelerator facility in Germany.

Objective

Neutron-induced cross sections of short lived nuclei are key quantities in many domains, such as fundamental nuclear physics, astrophysics and applications in nuclear technology. However, the difficulties to produce and manipulate the necessary amounts of radioactive nuclei make the measurement of such cross sections with current techniques extremely difficult or even impossible. Surrogate reactions in inverse kinematics represent the most promising indirect approach to determine these cross sections: The excited nucleus of interest is produced by a different reaction than the neutron-induced reaction. The measured decay probabilities strongly constrain model parameters enabling accurate predictions of the desired neutron cross section.
We propose to combine surrogate reactions with the unique possibilities at ion storage rings, which are high-precision tools to study nuclear reactions in inverse kinematics with radioactive ion beams. The advantages range from greatly improved beam properties over the absence of target contaminants and backings, and a strong reduction of the straggling, thanks to the use of pure, windowless and ultra-thin targets. However, the demanding vacuum conditions of storage rings put severe constraints on the detection setup. In addition, it is necessary to validate this completely new methodology by comparing first results with good-quality data measured in direct kinematics. Still, there is a lack of direct-kinematics data that can be used as benchmark.
We propose to perform simulations to define the set-up for the first surrogate-reaction measurements at the storage rings of the GSI facility. We will also investigate innovative solutions to overcome the vacuum issues like the use of solar cells. Finally, we will measure the 208Pb(d,d’) reaction in direct kinematics, which is one of the best suited cases to be used as benchmark.
With Nu-Ring we will set the basis to establish a cutting-edge technology for the study of surrogate reactions.

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution
€ 184 707,84
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost
€ 184 707,84