Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Extremely Coherent Mechanical Oscillators and circuit Cavity Electro-Optics

Project description

Removing the damper on good vibrations

People have been harnessing the capabilities of mechanical oscillators for thousands of years, from chronometers in ancient times to the miniature nanosensors of today. Mechanical nano-oscillators are opening a new window on the atomic and subatomic world as we use changes in their oscillatory patterns to gain information about the molecules and materials with which they are interacting. The dissipation of their energy, or decrease in oscillatory amplitude over time, is a challenge to the precision and accuracy of measurements based on changes in their oscillations. The EU-funded ExCOM-cCEO project is exploiting emerging methods to achieve a new generation of ultra-low dissipation mechanical oscillators for advanced technologies.

Objective

The quest for mechanical oscillators with ultralow dissipation is motivated by classical and quantum sensing and technology, and precision measurements. For decades, the most coherent mechanical oscillators were acoustic vibrations in kg-scale crystalline bars. Recently a paradigm shift has occurred. The combination of elastic strain engineering a technique used in microelectronics with phononic mode engineering has resulted in 1D nano-strings with a mechanical quality factor Q of 0.8 billion the highest ever achieved at room temperature. Remarkably, these new techniques have major untapped potential, as they have only been applied to non-crystalline materials in 1D. We propose a new generation of strain-engineered crystalline and superconducting mechanical oscillators whose Q-factors are predicted to exceed 100 billion in up to 2 dimensions. We will seek to reach this theoretical limit, probe new dissipation mechanisms, and utilize these oscillators for quantum optomechanics in new regimes and achieve room temperature ground state cooling and ponderomotive squeezing. Likewise, we will apply these techniques to create highly coherent superconducting electromechanical devices at milli-Kelvin temperatures, enabling quantum-enhanced force sensing and 1 second decoherence times. Secondly, we will explore a fundamentally new method for measurement and manipulation of microwave fields with optical fields the nascent field of circuit Cavity-Electro-Optics (cCEO). First recognized over a decade ago, it is possible with optical fields to cool, amplify or interferometrically read out microwaves. Yet to date this regime has remained in accessible due to insufficient coupling strength between the microwave and optical fields. We will overcome this challenge based on a new circuit architecture, allowing laser cooling and laser amplification of microwaves and electro-optical masing using optical backaction, and thereby opening an entirely new way to manipulate microwaves.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 496 000,00
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 496 000,00

Beneficiaries (1)

My booklet 0 0