Project description
In silico screening of solar cell material
Singlet fission is a photophysical phenomenon exploited during the production of solar cells to increase their efficiency. It usually requires electronic interaction between two or more chromophores or intramolecular interaction within a bichromophore. However, no rational design principles exist for designing these systems. The EU-funded D3AiSF project aims to develop an automated workflow for the high-throughput screening of the singlet-fission performance of various copolymers. Researchers will combine computational tools with fundamental concepts of quantum chemistry to simulate the quantum dynamics of these molecules and identify in silico novel and efficient materials for solar cells.
Objective
Singlet fission is a multiple exciton generation process where a singlet exciton splits into two triplet excitons in adjacent chromophore centers, resulting in generation of two electron-hole pair carriers from each absorbed photon. Molecular systems displaying this phenomenon are very desired because they can, for instance, increase the efficiency of solar cells which must possesses both favorable energetics and appropriate electronic coupling. In this context, intramolecular bi-chromophores are particularly interesting in terms of their singlet fission capabilities. Specifically, these donor-acceptor copolymers have both proper electronic structure characteristics and modular molecular architecture. Nonetheless, no rational design principles exist for designing these systems, with the current state-of-the-art being based, primarily, on trial-and-error strategies. Thus, the field is ripe for the insight that can be brought by theoretical work, which has the potential to discover, in silico, new efficient singlet fission compounds.
The objective of the D3AiSF project is to combine state-of-the art computational tools with fundamental concepts of quantum chemistry in order to advance the intramolecular singlet fission field through high-throughput screening of efficient donor-acceptor copolymers and quantum dynamics simulations. The project’s first step involves designing an automated workflow capably of screening large numbers of singlet-fission capable donor-acceptor copolymers based on energy and coupling descriptors. Afterwards, a second stage focuses on the singlet-fission performance of the very best potential candidates, which are evaluated in terms of real time quantum dynamics of the nonadiabatic process, which will ultimately validate their relevance. Overall, this project stimulates both data-based theoretical chemistry and the field of intramolecular singlet fission through the computational design and discovery of novel materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences computer and information sciences databases
- natural sciences chemical sciences physical chemistry quantum chemistry
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.