Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Imaging and Addressing of Single Molecules in Optical Lattices

Project description

From atoms to molecules: A cutting-edge quantum simulator ups the body count

A little more than 10 years ago, scientists demonstrated a pioneering quantum platform that enables us to detect and measure parameters associated with single laser-cooled atoms in an artificial crystal of light (an optical lattice). The atoms are held in the 'nooks' of the lattice where they can move but not escape, acting like electrons in a real crystal. Using this well-controlled quantum system (quantum gas microscope), the EU-funded IASMOL project will up the ante. The team will create arrays of molecules by association of ultracold atoms and develop techniques to image individual molecules in order to study many-body systems with long-range interactions.

Objective

Nobel Prize winner Richard Feynman first emphasized the complexity of simulating quantum systems. Using classical computers, the exponential scaling of the required computational power with the number of constituent particles of the quantum system makes full simulations impossible for high particle numbers. As a solution, Feynman suggested using a quantum computer that operates according to the laws of quantum mechanics. This notion of quantum simulation - to simulate one quantum system with another - therefore has the main goal of solving problems that are not accessible using a classical computer. A prominent example of quantum simulation, that is the topic of this proposal, is the study of interacting many-body quantum systems.
Over the course of the “Imaging and Addressing of Single Molecules in Optical Lattices” (IASMOL) project I will develop techniques to combine the state-of-the-art imaging and addressing techniques currently employed in atomic quantum gas microscopes and apply them to molecule experiments. This will enable the quantum simulation of strongly interacting matter with precise single-particle control and in-situ imaging. I will use molecules created by the association of ultracold alkali-metal atoms. This approach benefits from the enormous advances in laser cooling of atoms and crucially allows the lattice to be loaded with atom-pairs from degenerate atomic gases. The host group (HG) within the physics department at Durham University is part of the Joint Quantum Centre which has a major research theme in ultracold atoms and molecules (both theory and experiment). The HG have successfully created RbCs molecules by the association of atoms for many years, allowing for studies of the properties of these molecules. The RbCs experiment in the HG is therefore the ideal environment to implement the IASMOL project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

UNIVERSITY OF DURHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
STOCKTON ROAD THE PALATINE CENTRE
DH1 3LE DURHAM
United Kingdom

See on map

Region
North East (England) Tees Valley and Durham Durham CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0