Project description
Computational model for surveilling prostate cancer
According to the World Cancer Research Fund, prostate cancer is the second most common cancer among men and the fourth most common cancer overall. While detection of prostate cancer has improved, monitoring its progression has proven to be more complicated. Cutting-edge multiparametric magnetic resonance imaging (mpMRI) provides high-quality information about tumour anatomy and physiology. PICModForPCa is developing a predictive, personalised model of prostate cancer based on mpMRI to better exploit the wealth of data available. Comparing a patient's imaging and clinical data at two different time points will enable personalised active surveillance that improves treatment, patient quality of life, and survival rates.
Objective
Prostate cancer (PCa) is a major health problem among ageing men worldwide, especially in Europe. However, the medical management of PCa only offers limited individualisation and has led to significant overtreatment and undertreatment, which may compromise patient quality of life and survival respectively.
Active surveillance is a clinical strategy in which patients with life-threatening PCa are directed to treatment while those with indolent tumours remain closely monitored via regular clinical tests and medical imaging. Multiparametric magnetic resonance imaging (mpMRI) provides high-quality data on PCa and is increasingly used in its diagnosis and surveillance, but computationally exploiting the wealth of data in these images to obtain precise information on tumour evolution to guide clinical management is an unresolved challenge.
To address this timely issue, this project proposes to derive a personalised predictive mathematical model of PCa based on mpMRI to run organ-scale simulations that improve diagnosis and forecast the patient’s tumour evolution. The model will rely on robust biological and mechanical phenomena described via differential equations whose parameters are identified voxel-wise by solving an inverse problem using the patient’s clinical and mpMRI data at two dates. The model will then be validated by comparing simulation and actual data at a posterior date. The resulting predictive technology offers an unparalleled advance to personalise and optimise active surveillance for PCa, hence meeting many European Commission priorities for research in cancer.
The candidate has previously developed computational models and methods to study PCa growth in clinical scenarios. Building on this ideal background, this project will provide him with crucial scientific techniques and skills to become a leading independent researcher, produce high-impact oral and written communications, and start an active network of collaborations between the US and Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology prostate cancer
- natural sciences mathematics pure mathematics mathematical analysis differential equations
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
27100 Pavia
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.