Project description
Promising perovskite solar cells get a boost in efficiency and longevity
Perovskites are the wonder children of solar cell materials. Within a little more than a decade, perovskite solar cell efficiencies have improved more than tenfold, breaking records and paving the way for the widespread uptake of cost-effective and highly efficient renewable solar energy to electricity conversion methods. Among the few remaining challenges are further optimising charge-carrier dynamics and increasing long-term stability, without which cost and performance targets cannot be met. The EU-funded HES-PSC-FCTL project is developing a novel concept to achieve these aims based on functionalised charge transport layers and graphene.
Objective
During the past years, photovoltaic technology has shown its greatest potential to be scaled up to meet future energy requirement. Perovskite solar cell (PSC) as a promising next-generation photovoltaic technology has attracted great attention, but its performance is still limited by charge carrier collection efficiency and long-time stability.
In this project, the applicant aims to employ novel all-inorganic charge transport layers to fabricate high efficiency and stable inverted planar perovskite solar cells (power conversion efficiency > 23%), based on a functionalized charge transport layer- a Lanthanum(La)-doped BaSnO3(LBSO)/graphene bi-layer. LBSO has a cubic perovskite structure which provides an opportunity to further improve the quality of the interface between the electron transport layer and the perovskite film in conjugation with atmosphere annealing process, which we term “LBSO-template induced perovskite re-nucleation and crystal growth”. A compact conductive graphene layer inserted between the LBSO layer and the metal contact can act as a spacer layer to block the mobile ion and moisture penetration. That will not only improve the device stability (maintain initial efficiency > 90% after 1000 h illumination), but also give a chance to reveal the device degradation mechanism in depth.deeply.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology materials engineering crystals
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences computer and information sciences internet transport layer
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
GU2 7XH Guildford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.