Project description
Peptide based self-replicating coacervate protocells
A fundamental question in chemistry and biology is how a self-replicating protocell could be formed from a mixture of molecules. The EU-funded PEPREP project proposes to use the coacervation of self-templating peptides as a novel approach to create stable self-replicating protocells. Short peptide building blocks with aromatic and ionic side chains will be used, which are designed for self- or cross-recognition and can dimerize through chemical bond formation. Preliminary results show that these peptides spontaneously form coacervate droplets. The coacervates enhance self-replication via the concentration of the building blocks, catalysing the template-directed peptide dimerization and stabilising the products. The development of these model systems will provide valuable insights into plausible pathways to self-replication and the origin of life.
Objective
One of the most fundamental questions in chemistry and biology is how a self-replicating protocell could form from collection of inanimate molecules. Self-replicating RNA molecules in lipid compartments have been widely studied, but these systems are inherently unstable and a plausible mechanism for their spontaneous formation and repeated replication is still lacking. Here, I propose to use coacervation of self-templating peptides as a radically new approach to create stable self-replicating protocells. We will use short peptide building blocks with aromatic and ionic side chains that are designed for self- or cross-recognition. The building blocks can dimerize through reversible or irreversible chemical bond formation, including disulfide, imine, alkene (metathesis) and peptide (native chemical ligation) bonds. Preliminary results indicate that these peptides spontaneously form coacervate droplets when dimerized. The coacervates enhance the self-replication by naturally concentrating the peptide building blocks, catalyzing the template-directed peptide dimerization and stabilizing the product. By periodic cycling of the solution temperature or pH, the coacervate protocells can be dissolved and recondensed, yielding an elementary system of self-replicating protocells. These coacervate protocells not only concentrate peptides, but also nucleotides, inorganic nanoparticles and pigments, creating a potent microreactor for prebiotic chemistry. Developing these model system will provide valuable insights in new prebiotically plausible pathways to self-replication and the origin of life.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules lipids
- natural sciences biological sciences genetics nucleotides
- natural sciences biological sciences genetics RNA
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.