Project description
Freeing 2D organic nanomaterials to do their thing
Large-scale approximate 2D structures – a piece of paper, for example – are not particularly exciting although they can be quite useful. A 2D material consisting of a single layer of atoms, though, is significant structurally and even more exceptional when it comes to its properties. The EU-funded EMOF project has developed a new paradigm to study one of the most interesting 3D organic nanomaterials of the last two decades, metal-organic frameworks, in 2D form on insulating substrates. The novel platform will minimise the interactions that cloud the issue when these materials are studied on metal substrates, enabling clear understanding and control of their electronic properties for a new generation of devices.
Objective
Metal-organic frameworks (MOFs) are coordination polymers synthesized by bonding organic ligands with metals or metal clusters. Recently, exotic electronic properties have been predicted theoretically for two-dimensional (2D) MOFs, such as topological non-trivial band structure (2D organic topological insulators and so on), superconductivity, half-metallic ferromagnetism and quantum spin liquid. 2D MOFs have been synthesized on metal surfaces by following the concepts of supramolecular coordination chemistry. However, molecular adsorbates on metal surfaces interact strongly with the underlying metal substrate. Therefore, their electronic properties are drastically modified.
This project will focus on synthesizing and investigating the intrinsic exotic electronic properties of 2D MOFs on insulating, weakly interacting, and tunable gated substrates by ultra-high vacuum low-temperature Scanning Tunneling Microscopy and Spectroscopy with non-contact Atomic Force Microscopy. In order to achieve these ambitious targets, I have divided this proposal into three work packages: 1. synthesizing 2D MOFs on inert surfaces; 2. structural and electronic characterization of 2D MOFs; 3. tuning the exotic electronic properties of 2D MOFs on gated graphene devices. The applicant and the host group have initial results on the topics discussed in this proposal and are thus in a unique position to make ground-breaking contributions in this area.
Understanding and tuning the growth and the electronic properties of MOFs will offer a versatile platform to realize topological electronics as well as different kinds of novel phenomenon in condensed matter physics. The bottom-up synthesis techniques guarantee a technological route which can easily be scaled-up to be used for applications. Longer term, the biggest impact is expected through applications of MOFs in dissipationless electronics and spintronics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences condensed matter physics
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences optics microscopy scanning tunneling microscopy
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.