Objective
The development of methods for the transition metal (TM) catalyzed functionalisation of C–H bonds has emerged as an extremely important topic in present-day organic synthesis aiming at providing tools that allow treating the ubiquitous and normally inert C–H bonds as any other functional group for synthetic modifications. However, controlling the site of C–H activation or distinguishing between the subtle differences in reactivity of two given C–H bonds is one of the major challenges yet to be addressed. In this context, meticulous design of directing groups (DG) over the last decades has enabled a variety of relatively unreactive C–H bonds to be functionalised under transition metal catalysis. To date, much progress has been made in developing strategies for the ortho-functionalisation of arenes mainly through the installation of DGs in the stoichiometric amount. However, these DGs are not part of the final target molecule; as a consequence, its covalent installation and/or removal from the substrate will add additional steps to the synthetic sequence thus lowering the efficiency and applicability of these approaches. On the other hand, distal meta- and para-C–H functionalisation approaches, are extremely scarce despite these substitutions are widespread motifs amongst biologically active molecules. The research outlined in this proposal aims at developing a process that makes use of a transient DG in a catalytic amount which binds reversibly with carbonyl compounds via imine formation leading to a novel direct meta- and para-functionalisation methodology. Precisely, we seek to develop a protocol that removes the need for the use of stoichiometric directing groups to activate distal C–H bonds. The realization of the proposed objectives will push the boundaries of the state-of-the-art in the area of remote C–H bond functionalisation by providing atom and step economical access to molecules that are difficult to prepare via conventional multi-step routes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences organic chemistry hydrocarbons
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
M13 9PL Manchester
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.