Objective
Photonic and electronic devices are developed by manipulating the electronic structure of semiconductors and dielectric materials. Fabrication routes that utilize lithography, ion implantation, and self-assembly are expensive or hard to control. Ion-doped organic semiconducting films hold the potential for easy-to-fabricate single-layered devices via solution-based deposition techniques. Currently, flexible devices are fabricated as a stack of uniform thin films with single or multiple semiconducting layers. Modifying the two-dimensional (2D) electronics structure in each film allows for making complex three dimensional (3D) on-chip photonic and electronic devices.
Solid-state bipolar electrochemistry was demonstrated in planar Light-emitting Electrochemical Cells (LECs). A conducting floating bipolar electrode (BPE) is placed between the driving electrodes were redox reactions take place driven by the potential drop at the BPE-extremities. Recently, light was shown to induce the same effect in the mixed (ionic-electronic) conducting films.
Here, we propose to utilize this non-contact method to locally induce doping in perovskite nanoparticle photonic devices, aiming for two major finding. On one hand, we will take advantage of this optical technique to study degradation mechanism in perovskite nanoparticle surrounded by ionic electrolytes in order to identify the best electrolyte towards enhancing device performance. On the other hand, we will explore new 2D photonic patterns written in planar and flexible perovskite photonic devices. Methods to fix doping in the formed devices will be established. This includes post-doping polymerization or cross linking, as well as high-temperature glass transition ionic conductor along with photothermal nanoparticles.
Success of this project will be of high interest for research and industrial applications in perovskite photonics focused on, for example, lighting, lasers sensing and data processing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences organic chemistry organic reactions
- engineering and technology materials engineering coating and films
- engineering and technology materials engineering amorphous solids
- engineering and technology nanotechnology nano-materials
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28906 Getafe
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.